CULTURE

森の資源を隅まで活かす 枝材で組むトラス屋根

テクノロジーで実現する 間伐材と伐採プロセスで捨てられた樹冠材でつくる〈フィールド・ステーション〉

CULTURE2024.04.25

© Architectural Association School of Architecture

〈フィールド・ステーション(Field Station)〉は、ロンドンの私立建築学校 AAスクール(Architectural Association School of Architecture)のキャンパスの1つであるフックパーク(Hooke Park)に建てられた、研究の場であり歩行者のためのシェルターであり、イベントの場としても活用できるオープン・エアの建築です。

通常は伐採プロセスの中で廃棄される樹冠材や枝材を活用したトラス構造となっており、取り外し可能なテンション・ロッドとほぞ接合で構成されているため、容易に解体、再構築が可能なため、森林の状況に応じて移設することができます。

AAスクールのDesign + Makeプログラムの共同ディレクター エマニュエル・ヴェルクリュイス(Emmanuel Vercruysse)が主導し、その学生とスタッフによって設計・製作されました。

(以下、Architectural Association School of Architectureから提供されたプレスキットのテキストの抄訳)

© Architectural Association School of Architecture

工業的な木材生産において、立木のうち建築部材になるのは50%程度である。その原因の1つは、伐採プロセスにおいて樹冠材や枝が森林に取り残されることにある。

このプロジェクトでは革新的なロボット・アプリケーションを導入することで、〈フィールド・ステーション〉における100m²の屋根システムの主要な建築部材として、通常は木材伐採の副産物である50~90mmの伐採された小径丸太の使用が可能となった。

このゼロ・バリュー材の利用は、木材サプライ・チェーンの抜本的な見直しと、木造建築の生産において、先端技術の地位を戦略的に確立することを目的としている。

© Architectural Association School of Architecture

森の中の切り捨てられた枝材でつくる屋根

フックパークの工業用森林の中に配置された〈フィールド・ステーション〉は、研究や教育のためのフィールドベース、森林管理者や歩行者のためのシェルター、地元の林間学校のための野外教室として、また敷地内でのカジュアルな集会や講演、イベントのための基地として、フレキシブルに使用することができる。

長期的には、近隣の農地の再野生化計画(Rewilding programme)が進むにつれて、〈フィールド・ステーション〉は変化を監視するための観測所となることも想定されている。

このプロジェクトは、機械や接着剤を使わずに組み立てられる、軽量で取り外し可能な屋根フレーム構造を実現した。分解できるように設計された屋根構造は、2つの平面で構成されており、それらをネジ棒で固定することで、対角線上にあるすべての丸太の枝を圧縮し、単純なほぞ接合を可能にしている。

© Architectural Association School of Architecture

森の生育から木材の加工まで、木造建築の実証実験を行うフックパーク

建築協会のキャンパスであるフックパークは、木造建築の大規模な実験のための実験室であり、森を作品の中心に据えた研究の場でもある。フックパークは、自ら木材を加工し、それを供給する森林を管理しているため、ここを拠点とする学術・研究プログラムは、苗木から建築物まで、木材のサプライ・チェーン全体を調査し、革新するユニークな立場にある。

この〈フィールド・ステーション〉は、キャンパスの他の建物から離れた作業林の中にあり、AAスクールのDesign + Makeプログラムの学生とスタッフによって設計・製作された100m²のオープン・エア構造物である。

市場価値が低く、伐採の副産物として放置されることの多い樹冠材という「林業廃棄物」を建築に応用する方法を考案することで、過小評価されている資源が価値ある建築材料に生まれ変わる可能性を実証している。

林業における意思決定は何十年という単位で測られるものであり、このプロジェクトは、森林管理者だけでなく、学生、研究者、生態学者たちが、気候変動に強く、健全な森林のための将来の森林戦略の開発に必要な長期的思考に取り組みながら、「現場」で作業するための場として構想されている。

現在、木材用の森林プランテーションは単なる作物ではなく複雑な生態系であり、適応力があり、自己組織化する、人間社会と同様の知的システムであると理解されつつある。

© Architectural Association School of Architecture

© Architectural Association School of Architecture

危機に瀕する2種の木でつくるトラス構造

〈フィールド・ステーション〉ではブナとトネリコという2種の木材を使用しているが、どちらも危機に瀕している。

ブナは気候変動による脅威が最も大きいとされるイギリスの主要な樹種の1つとされており、一方トネリコは、アッシュ・ダイバック(Ash dieback)という病気を引き起こす菌類に包囲されている。どちらの樹種も2021年に森林管理計画の一環としてフックパークで伐採され、建築の材料となった。

産業用収穫機がブナを伐採した後の林地残材は、直径50~90mmの枝材で構成され、このプロジェクトで使用される主要な建築資材となる。この材料は、森林に残された木材の大部分を占めている。

© Architectural Association School of Architecture

構造ロジックはARUPのエンジニアチームと共同で開発が行われ、トネリコ材のグリッド内にブナ材の丸木ブレースを組み込んだトラスが完成した。これにより、全面に3mのキャンチレバーを設けることが可能となった。

特注のコンピュータ・ビジョン・システムとロボティック・ファブリケーションの統合により、256本の丸木ブレースの精度が保証され、自然な枝のばらつきにも対応が可能となった。

森がマテリアルのパラメータを決定し、そのパラメータがデザインをリードする。一方で技術的な戦略は、フックパークの森が提供するゼロ・バリュー材を使用することで、廃棄される材料の地位を高める役割を果たす。

これらはおそらく、マテリアル資源に対する、より適応的で地域に根ざしたアプローチを暗示しているのだろう。

© Architectural Association School of Architecture

© Architectural Association School of Architecture

直径の小さな丸太の間伐材を直線状の部材として使うという選択肢は、当初からチームが熱心に検討していたものだったが、当時、森林から伐採できる適切な長さと直径の木材がないことが判明した。

短い長さの木材をつなぎ合わせることも検討したが、その場合は構造的なアプローチが若干異なる可能性があり、精度を出すために部材の上部と下部を機械加工する必要があり、研究における限られた時間の中では実現不可能であった。

トレードオフの関係ではあるが、学生に課した明確な制約は、私たちの森林が提供できるものだけで仕事をすることであり、この志を貫くことも重要である。ブレースの位置を決める製材グリッドに使用したトネリコは、私たちの森から調達した。

© Architectural Association School of Architecture

上下の直線的な部材は機械加工された木材であるため、支配的な印象を与え、このプロジェクトの目的とは相反するように感じられる。

そのため丸太材のトラス構造にはまだ追求の余地があるが、自然の枝の形状と製材された木材のすっきりとしたラインが意外な美的コントラストを生み出し、独自のストーリーを物語っている。

© Architectural Association School of Architecture

取り外し可能なロッドと木材のほぞ加工で構築する、解体、再構築が容易な建築

〈フィールド・ステーション〉のブリーフでは、小さな面積で地球に触れること、一時的で取り外し可能であること、柔軟性、再利用、将来的な再生の原則を示すこと、サーキュラーエコノミーの考え方に沿うことなどが求められた。

恒久的な固定具や接着剤を使わず、簡単に取り外せる中央のテンション・ロッドのみを使用しているため、取り外しが容易である。構成部品は製作され、平らに梱包され、現場に運ばれ、わずか10日間で組み立てが完了した。

© Architectural Association School of Architecture

〈フィールド・ステーション〉は、比較的容易に移設が可能であり、森林の定期的な間伐や伐採に対応することができる。

そのため、観察所として、教育スペースとして、森林管理者のシェルターとして、土壌の健全性を測定する研究者や生態学者の拠点として、蛾やコウモリの数を数える場所として、ウォーキングを楽しむ人々の休憩所として機能する、長期間にわたって景観の変化を観察するための空間なのである。

© Architectural Association School of Architecture

© Architectural Association School of Architecture

樹木の少ない国だからこそ重要となる林業廃棄物の活用

現代の林業で廃棄物として処理されることが多い樹冠材は、このプロジェクトの重要な構成要素であり、研究の焦点である。樹木の種類や樹齢にもよるが、この材料は地上部におけるバイオマス全体の20~50%を占める。

2015年の世界的な樹木調査によると、国民1人当たりの樹木数はカナダが8,953本、アメリカは716本、フランスは182本、イギリスはわずか47本であるとされている。

樹木の観点から見ると、イギリスは世界で最も貧しい国の1つであり、森林被覆が総面積のわずか13%であるイギリスにおいて、伐採された樹木をより多くの割合で使用すること、そして設計者がこの目標に向けて使用例を作成することが重要であると考えられる。

従来の製材ではなく、枝材を使用することで、ブナの成木2本分の木材を節約することができた。森林の少ない国では、この方法によって、伐採木の材料廃棄が50%から10%に大幅に削減される。

© Architectural Association School of Architecture

〈フィールド・ステーション〉を実現するビジョン・システム

フックパークのロボットにコンピュータ・ビジョン・システムを組み込むことで、形状の自然なばらつきを考慮しながら、樹冠材の枝を正確に加工することができる。

グリッド材の製材においても、伐採時にそれぞれ固有の形状を持つため、スキャニング、部品分析、ツールパス生成からなる自動ワークフローにより、効率的な生産が可能となった。

© Architectural Association School of Architecture

〈フィールド・ステーション〉のロボット・アプリケーションは、スキャニング技術による木材の分析や、複雑なトラス構造のロボット製作を探求する、他の研究機関の学術的な仕事と連携している。

コペンハーゲンで開催されたビエンナーレ「Works+Words 2022」にてトム・スヴィラン(Tom Svilan)が発表した、CTスキャンによる木材の内部構造の分析によって最適化されたフライス加工をレイアウトする〈Timber Stories〉と類似しており、ETHでのグラマジオ・コーラー(Gramazio Kohler)との共同研究である〈House 4178〉は、空間的なトラス構造内の標準化された木材要素の切断と組み立てを自動化した。

これらのプロジェクトの中間に位置する〈フィールド・ステーション〉は、トラスの製造と組み立てを完全に自動化しようとはしていないし、木材内の芯や枝の正確な形状を完全に理解しようともしていない。

その代わりに、丸太材本来の強度を活かし、本来なら廃棄物とみなされるような接合部のディテールを、家具に匹敵する工芸品レベルにまで高めるという、これらのプロジェクトの中間点を押し進めているのである。

© Architectural Association School of Architecture

以下、Architectural Association School of Architectureのリリース(英文)です。

FORAGING FOR A FIELD STATION: Cultivating material efficiency
AUTHORS: Emmanuel Vercruysse and Kate Davies
Co-author: Wyatt Armstrong

Abstract

Within industrial timber production, it is widely accepted that as little as 50% of a standing tree makes it into a building component. Part of this is down to the process of harvesting itself, where the crown timber and branches are left behind in the forest.

The project deploys an innovative robotic application to enable the use of this foraged small diameter roundwood (50-90 mm, usually a by-product of timber harvesting) as the main building component in a 100m² roof system for a Field Station at Hooke Park.
The application for this zero-value timber promotes a radical rethinking of the timber supply chain and a strategic positioning of advanced technologies within the production of timber architecture.

Carefully nested within the fabric of the industrial woodland at Hooke, the Field Station is a flexible use shelter – providing a field base for research and teaching, shelter for our forester and for passing walkers and an outdoor classroom for local forest schools, as well as being a base for informal gatherings talks and events on site.[ Fig.1] In the longer term the field station is imagined as an observatory for monitoring change, as the neighbouring agricultural landscapes in view from the field station undergo a rewilding programme and as the forestry growth and harvesting evolve around it.

The project resulted in a lightweight and demountable roof frame structure that is assembled without the use of permanent mechanical or glue fixings. Designed for disassembly, the roof structure comprises two planes of chords that are held together by threaded rod, which forces all the diagonal roundwood branches into compression allowing the use of straightforward tenon connections.

A Forest Context

Hooke Park, is the Dorset campus of the Architecture Association. Set within its own working woodland, it is a laboratory for large-scale experiments in timber architecture and for research that places the forest at the centre of the work. Because Hooke Park processes its own timber and manages the woodland that supplies it, the academic and research programmes based there are uniquely positioned to interrogate and innovate across the timber supply chain, from sapling to building.

Situated away from other campus buildings, set within the working forest, the Field Station is a 100m² open air structure designed and built by students and staff from the AA’s Design + Make postgraduate programme.[ Fig.2] The challenge was to devise an architectural application for ‘forestry waste’ crown timber – small diameter roundwood commonly left on the forest floor as a by-product of the harvesting process, due to its limited market value – and to demonstrate how an undervalued resource might be transformed into valuable construction material.

The material parameters for the built demonstrators are in many ways defined by the silvicultural approaches and woodland management strategies of the past. Decision making in forestry can be measured in decades if not centuries and the project is envisaged as a space for students, researchers and ecologists as well as our forester, to work ‘in the field’ as they engage with the long-term thinking necessary for the development of future forest strategies for a climate resilient, healthy woodland. Forest plantations for timber are not just crops, they are complex ecosystems, increasingly understood as intelligent systems and similar to human societies, being complex, adaptive and self-organizing¹ (Simard, 2021).

The Field Station uses two species of timber – Beech and Ash – both are at risk. Beech is among the major British tree species considered most at threat from climate change² (Hemery, Evelyn & Simblet, 2021, p.201), whilst Ash is under siege by a fungus that leads to Ash dieback. Both tree species were harvested at Hooke in 2021 as part of the woodland management plan and provide material for the build. The forest residue – after the industrial harvester has passed through harvesting Beech – consists of 50-90mm diameter branch timber which forms the primary building material deployed in the project. This material accounts for a substantial portion of timber left behind in the forest.

The structural logic was developed together with the engineering team at ARUP, resulting in a space truss that incorporates Beech roundwood braces within a dimensional Ash grid. This facilitates a 3m cantilever on all sides. The integration of a bespoke computer vision system with robotic fabrication ensured the precision of 256 roundwood braces, adapting to natural branch variations.[ Fig.3]

In this way a relationship is somewhat inverted, the forest dictates material parameters, and these parameters lead the design, whilst technological strategies serve to elevate the status of a discarded material for an application of zero value timber, working with what the forest at Hooke Park provides. It suggests perhaps a more adaptive, localised approach to material resources.

The option of using small diameter roundwood thinnings for the linear members was something the team was initially keen to explore but found there was not suitable length and diameter timber available for harvest from the forest at the time. Stitching shorter lengths together was a possibility, although it might well require a slightly different structural approach, and the top and bottom of these members being machined to achieve the accuracy (the advantage of the double frame sawn linear members is that they automatically generate the nodal connection). This investigation simply proved unfeasible within the academic timeframe of the project. Although it was a trade-off, the explicit constraint set to students was to work only with what our forest can provide, and it was also important to hold to this ambition. The Ash used for the sawn-timber grid locating the diagonals, was sourced from our own forest. With ash dieback affecting trees in Hooke Forest, some Ash is being harvested early. [ Fig.6-7]

Pursuing a wholly roundwood space-truss construction is certainly something that would be interesting to develop further, as it could be argued that the top and bottom linear members as machined timber are rather dominant, and perhaps feel counter to the objectives of the project. Having said this, there is something unexpected in the aesthetic contrast within the structure, the clean lines of the sawn timber are striking when seen beside the natural branch forms, and perhaps this tells its own story.

The brief for the Field Station required that it touched the earth lightly, and that it was temporary and demountable, exemplifying principles of flexibility, reuse and future reclamation, in keeping with ideas of the circular economy. The lack of permanent mechanical fasteners or glue, using only central tensioning rods at each node, which can be easily removed, facilitates demounting. The components were fabricated, flat-packed, and transported to its site for a swift assembly process, completed in just 10 days. [ Fig.13,14,15,16] This flexibility offers a dynamic shelter within an evolving working forest. The Field Station’s mobility offers the potential for relatively simple relocation, capable of adjusting to the woodland’s periodic thinning and felling over time. In its current position it faces south, framing a changing landscape – oriented towards a spruce compartment felled and replanted five years ago, and looking out towards the neighbouring Mapperton Estate, which is in the midst of a large scale rewilding project. It serves as an observatory, a teaching space, a shelter for the forester, a base for researchers and ecologists measuring soil health, counting moths and bats, a resting point for walkers. It is a space for witnessing and monitoring change in the landscape over extended periods of time.

Crown timber, which is frequently discarded as waste in contemporary forestry operations, is the key component and research focus for the project. Depending on the type and age of the tree, this material may account for 20–50% of its overall above-ground biomass. A 2015 global tree study³ (Crowther, et al. 2015) concluded that at that time Canada had 8,953 trees per person, the United States 716, France 182 and the UK just 47 trees per person. Given that in tree terms the UK is one of the poorest nations in the world, with woodland cover comprising just 13% of the total land area in the UK⁴, it seems important to use a greater proportion of a harvested tree and for designers to create use cases towards this goal. By using branch wood braces rather than traditional dimensional lumber, the amount of timber saved was equivalent to 2 mature beech trees. In a nation with little forest cover, this method significantly reduces the material waste of harvested trees from 50% to 10%.[ Fig.4]

To forage the material for the build, students spent numerous hours searching the forest floor for beech branches that met the project’s requirements for size and quality- a form of visual grading. This is also reminiscent of earlier foraging traditions known as estover, a term which refers to an allowance of wood that a person can take from a commons, and derives from the French, estovoir meaning, that which is necessary. [ Fig.5]

This project fits into a broader context within the Design + Make Postgraduate program at Hooke Park, that looks at minimally processed timber and aligns with a lineage of research at Hooke Park established by John Makepeace, Frei Otto, and ABK in the 1980s, testing the structural applications of forestry by-products through several buildings on-site. A series of projects – Boiler House, Woodland Cabin, Woodchip Barn⁵ (Self & Vercruysse, 2017) – over the past eight years have explored the unique structural geometries of trees, starting at the ground, and now with the Field Station, working up into the crown. Other projects such as the Foundry⁶ (Vercruysse, Mollica & Devadass, 2019) and the Library skeleton⁷ (Vercruysse, 2020a) at Hooke Park have advanced the scope of robotic workflows in the built work⁸ (Vercruysse, 2020b). The innovation in the Field Station – and the departure from robotic workflows used on past projects lies in the integration of the bespoke vision system.

A Vision System

By integrating a vision system within the Hooke Park robotics cell, crown timber branches can be processed into precise, predictable geometries, accounting for natural variation in an element’s geometry. With every web element in the space-frame system having its own unique shape at the time of harvest, an automated workflow comprised of scanning, part analysis and toolpath generation enabled an efficient production of structural components, processed into connection details only where the branch meets the building.

The guiding framework for this robotic setup was the delivery of 256 identical components from non-standard timber. The ambition was to build a robotic application to process leftover Beech crown timber into high quality structural products. Within the design of the Field Station, the elements made from these branches fit into the building’s structural system by the geometry defined at their extremities, however there are no geometric conflicts with any other elements along their length. By integrating a vision system with an indexing circular saw, non-uniform geometries could receive a series of targeted cuts at their ends, extracting a pair of in-plane tenon joints from the branch volume.

This application for robotic vision is enabled by an Ensenso N30 structured light scanner, typically used in factory settings for quality inspection or bin picking. This 3D camera is equipped with two cameras trained inwards to produce a rough sense of binocular vision. This provides a good sense of lateral positioning, but a poor understanding of depth. The cameras depth perception is snapped into focus by a projector placed in-between the two camera lenses. When firing, the projector emits a bright pattern of blue light that resembles a fine grain QR code. The camera’s internal computer compares a scaled flat version of this pattern against the one it now sees wrapped across an objects geometry, and measures its deformation across the objects surface. This brings the camera’s depth accuracy to ±0.5mm. Parts are brought to a distance of ~500mm from the camera to sit within its focal length.

The vision system is one of several additions to the robotics cell that enabled this project. Opposite the 3D camera is a Union Graduate cast steel bowl lathe, in this application the lathe was used to index a cutting blade to allow for greater flexibility in cut positioning. The camera and the lathe flank the robot on either side with roughly four meters in-between them. In front of the robot is a rail system that is hung from the outer wall of the cell. These rails are loaded with branches from outside the cell so the robot can be kept ‘fed’ without the safety perimeter of the cell being broken. A small opening was made in the front wall of the cell with a slide protruding through to allow the finished branch components to exit the cell and be collected. As essential as the vision system, is the cutting tool.. As branch diameters got larger through the project, a spindle mounted in a cast steel housing with a 400mm diameter blade replaced the earlier Makita saw. To carry the branches, the robot is equipped with an in-house made pneumatic gripper that went through multiple iterations, adapting to increasing branch sizes over the span of the project. [ Fig.8,9,10]

Using several scripts written in Python and C#, the camera is calibrated and accessed through an environment built in Robot Operating System (ROS). Within the cell the camera is mounted statically and positionally referenced to the robot’s root point. By knowing the camera’s coordinate system as an offset from the robot’s root point, scans of objects that the robot presents to the camera can be oriented and stitched together by reading the tool control point data at the position a scan is taken from.

While the camera is accessed by ROS, requests for the camera to fire are sent form Grasshopper through COMPAS, an open source computational framework developed by COMPAS Association for multi-disciplinary research in AEFC. The COMPAS plugin for grasshopper provides a networked link between ROS topics and information in grasshopper. Once fired, a point-cloud is delivered from the camera to ROS. It is then meshed within ROS, and sent over the network to grasshopper with a timestamp.

Once in Grasshopper, the meshes are linked through their timestamps and compiled into branches composed of four separate scans. The four scans allow roughly three quarters of the geometry at the branch ends to be documented. Through a contour analysis, the backside of the branch can be estimated by best-fit circles generated by 3 points on the contours. From the estimated circles, a centreline down the branch is found, to which the modelled geometry of a standardized component can be oriented. In orienting joinery to the branch centrelines, several stages of checks are in place to ensure key geometry of the tenon joints are fully located inside the branch. These involve projecting points on the tenon from the initial orientation back to the branch scan and adjusting accordingly.

The robotics toolpaths are derived from the planes and cut edges of the modelled joinery. Once the modelled joinery is verified to be within the scanned branch, the robotic movements are automatically updated. The motion planning involves matching the planes and defined edges of the tenon joints to several planes located on the circular saw. There are eleven surfaces that define the two tenons at either side of the branch. To prevent the robot’s axes from reaching high rotational values, the indexing of the saw blade allows the robot to make cuts perpendicular to each other without much change in position..

The robotic application for the Field Station nests into academic work of other institutions exploring the analysis of timber through scanning technologies, and the robotic fabrication of complex trussed structures. The work of the Field Station has parallels with Tom Svilan’s work ‘Timber Stories’⁹ (Svilans, et al, 2022) presented at the Works+Words 2022 biennale in Copenhagen in the analysis of the internal structures of timber through CT scanning for optimized milling layouts, and the work at ETH with Gramazio Kohler on House 4178¹⁰ (Gramazio Kohler Research, 2016) which automated the cutting and assembly of standardized timber elements within a spatial trussed assembly. Occupying a territory between these projects, the Field Station doesn’t seek to fully automate the production and assembly of the truss, or fully comprehend the precise geometry of the pith and branches within the timber as the continuity of grain is not being severed along the elements length. Instead it pushes a middle ground between these projects that leverages the inherent strength of round timber, and elevates the connection details, of what would otherwise be considered a waste product, to furniture grade levels of craft.

Project Credits

Project Leader: Emmanuel Vercruysse
Design + Make Teaching Staff: Wyatt Armstrong; Kate Davies, Dmitrii Federov, Will Gowland, Frederik Petersen, Emmanuel Vercruysse
Design + Make 2021-22 Student Cohort: Hanxing Cai, Chongyuan Duan, Malavika Arangil Karuvadath, Romain Odin Lepoutre, Yao Lin, Ting Liu, Garrett Nelli, Zhijiao Zhang, Xiaojing Zhong, Yulin Zhu
Arup Team: Francis Archer, Adam Plavsic ROS Specialist Gary Edwards

¹ Simard, S. (2021). Finding the mother tree: discovering the wisdom of the forest. First edition. New York, Alfred A. Knopf.
² Hemery, G., Evelyn, J., & Simblet, S. (2021). The New Sylva: A discourse of forest & orchard trees for the twenty-first century. London England: Bloomsbury Publishing.
³ Crowther, T.W. Et Al. (2015). Mapping Tree Density At A Global Scale. Nature, Volume, 25, Pp.201–205
⁴ Forest Research. (2023) Tools and Resources, Woodland Statistics. https://www.forestresearch.gov.uk/tools-and-resources/statistics/statistics-by-topic/woodland-statistics/
⁵ Self, Martin & Vercruysse, Emmanuel. (2017). Infinite Variations, Radical Strategies.
⁶ Vercruysse, Emmanuel & Mollica, Zachary & Devadass, Pradeep. (2019). Altered Behaviour: The Performative Nature of Manufacture Chainsaw Choreographies + Bandsaw Manoeuvres: Foreword by Sigrid Brell-Çokcan and Johannes Braumann, Association for Robots in Architecture.
⁷ Vercruysse, Emmanuel. (2020). The Anatomy of a Skeleton: Hybrid Processes for Large-Scale Robotic Fabrication.
⁸ Vercruysse, Emmanuel. (2020). Intuitive Protocols: Hybrid Processes for Large Scale Robotic Fabrication.
⁹ Svilans, T. (Producer), Ramsgaard Thomsen, M. (Developer), Tamke, M. (Developer), Cheng Sin Lim, A. (Other), & Sarakbi, K. (Producer). (2022). Timber Stories: Narratives of the Forest Resource. Contribution to exhibition
¹⁰ Gramazio Kohler Research, ETH Zurich. (2016). House 4178. https://URL https://www.masdfab.com/work-1516

Architectural Association School of Architecture 公式サイト

https://www.aaschool.ac.uk/

 

【購読無料】空間デザインの今がわかるメールマガジン TECTURE NEWS LETTER

今すぐ登録!▶

イギリス 関連記事

CULTURE2022.04.11

11世紀の塔の焼失した内部をめぐる新たな空間

建築遺産に新たな命を吹き込む保存・活用プロジェクト
CULTURE2022.03.18

ゼロ・カーボンへの決意を示す光の塔

マンチェスターに建てられた幾何学的な強さをもつ〈タワー・オブ・ライト〉、〈ウォール・オブ・エナジー〉
CULTURE2022.08.30

ヘザウィックによる緑地と一体化した建築

病院の臨床的な環境から解放されるがん患者のための空間〈マギーズ・ヨークシャー〉
CULTURE2022.08.05

間伐材と古いアルミ看板でつくる2次曲面の木造建築

インビジブルスタジオがイギリスの樹林園に設計したサステナブルなコミュニティシェルター〈コピス・ワーカーズ・シェルター〉

RECOMMENDED ARTICLE

  • TOP
  • CULTURE
  • ARCHITECTURE
  • 森の資源を隅まで活かす 枝材で組むトラス屋根〈フィールド・ステーション〉イギリス、AAスクール
【購読無料】空間デザインの今がわかるメールマガジン
お問い合わせ